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The critical behavior of a model colloid-polymer mixture, the so-called Asakura-OosawasAOd model, is
studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension,
the order parameter, the susceptibility, and the coexistence diameter. Our results clearly show that the interfa-
cial tension vanishes at the critical point with exponent 2n<1.26. This is in good agreement with the 3D Ising
exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the correspond-
ing 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size
scaling is applied to the AO model. In particular, we find that close to the critical point, the finite size
extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored.
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I. INTRODUCTION

By adding nonadsorbing polymer to a colloidal suspen-
sion, phase separation may be induced. This leads to the
formation of two coexisting fluid phases, separated by an
interfacef1,2g. The phases are characterized by their colloid
density, which is high in one phase, and low in the other. In
order to make the analogy to the fluid-vapor transition in
atomic liquids, the colloid rich phase is usually called the
colloidal liquid, and the colloid poor phase the colloidal va-
por. Obviously, the density of the polymers is exactly the
opposite: high in the colloidal vapor and low in the colloidal
liquid.

In the vicinity of the critical point, a number of important
physical quantities are described by simple power laws of the
form AtB. Here,t is some measure of distance from the criti-
cal point,A is called the critical amplitude, andB the critical
exponentf3g. To describe the critical phase behavior, one
thus needs to determine the location of the critical point, the
critical exponents and the critical amplitudes. These quanti-
ties can for instance be obtained in computer simulations,
provided finite size scaling methods are used. Finite size
scaling is required because the correlation length diverges at
the critical point. Since the accessible system size in a simu-
lation is finite, the true critical behavior is obscured as soon
as the correlation length exceeds the size of the simulation
box f3,4g. Finite size scaling offers a way to properly ex-
trapolate the data obtained in simulations to the thermody-
namic s5infinite systemd limit f5g.

In this work, we study the critical behavior of the colloid-
polymer model introduced by Asakura and Oosawaf6,7g sthe
so-called AO modeld. In previous simulations, we have de-
termined the critical point of the AO modelsfor one choice
of colloid-to-polymer size ratiod and we have provided evi-
dence that this system belongs to the 3D Ising universality
class f8,9g. However, we have not yet studied in detail
whether we can recover the critical exponents, nor have we
determined the critical amplitudes. The latter quantities are
of interest because certain critical amplitude ratios are pre-
dicted to be universal. In this work we combine computer

simulations and finite size scaling to address these issues.
The quantities that we consider are the order parameter, sus-
ceptibility, coexistence diameter, and interfacial tension,
whereby the critical point is approached along different
paths: from the one-phase region and along the coexistence
line.

The AO interfacial tension is of particular importance,
because it gives an indication of the strength of capillary
waves. This is an issue insmean-fieldd density functional
theories of the AO model. Following Ref.f10g, the strength
of the capillary waves is estimated byv=kBT/ s4psj2d, with
s the interfacial tension,j the correlation length in the two-
phase region,T the temperature, andkB the Boltzmann con-
stant. For 3D Ising critical behavior, hyperscaling implies
that v is constant in the critical regime. Note that this con-
stant is universal and given byv<0.8 f11g. In contrast, for
mean-field critical behavior, one would observe a decay of
the formv~ t−1/2. The mean-field behavior and the 3D Ising
behavior of the capillary strength are thus profoundly differ-
ent. Therefore, it is important to establish the universality
class of the AO model. For this purpose, an analysis of the
interfacial tension is particularly suitable. To determine the
critical behavior of the interfacial tension, finite size scaling
methods can be used that do not require prior knowledge of
the universality class. This enables a direct measurement of
the critical exponent, and the corresponding critical ampli-
tude. For the AO model, we obtain for the interfacial tension
a critical exponent 2n=1.26, which is in excellent agreement
with the 3D Ising value.

The critical amplitudes are used to test the universality of
a number of critical amplitude ratios. Following Stauffer
f12,13g, universality implies that only two amplitudes are
required to determine the remaining amplitudes. This allows
us to relate the critical amplitudes of the AO model obtained
in this work, to independent estimates obtained in experi-
mental, theoretical, and simulational studies of completely
different systemsf11,13g. We observe reasonable agreement,
but emphasize that the error bars, in both our estimates and
those in the literature, are quite substantial.

Note that an investigation of the AO critical behavior is
far more complex than an equivalent study of the 3D Ising
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lattice model would be. For instance, the binodal of the AO
model is asymmetric, and this gives rise to an additional
critical power law for the coexistence diameter. Moreover,
the AO model belongs to the class ofasymmetric binary
mixtures, which are generally difficult to simulate. In case of
the AO model, the accuracy required to apply finite size scal-
ing became available only after the recent introduction of a
grand canonical Monte Carlo cluster movef9g and succes-
sive umbrella samplingf14g. Note also that the application of
finite size scaling to asymmetric mixturesf15g is far less
common compared to that of symmetric mixturesf4g.

The outline of this paper is as follows. First, the AO
model is introduced. We then move on to describe the simu-
lation techniques used by us. Next, we explain how the order
parameter, susceptibility, interfacial tension and coexistence
diameter are extracted from the simulation data. The extrapo-
lation of these quantities to the infinite system is discussed in
Sec. VI. We then present our results and end with a summary
in the last section.

II. THE AO MODEL

The AO model was proposed in 1954f6g and later inde-
pendently by Vrij f7g as a simple description for colloid-
polymer mixtures. In this model, colloids and polymers are
treated as spheres with respective radiiRc and Rp. Hard
sphere interactions are assumed between colloid-colloidsccd
and colloid-polymerscpd pairs, while polymer-polymersppd
pairs can interpenetrate freely. Since all allowed AO configu-
rations have zero potential energy, temperature plays a trivial
role, and the phase behavior is set by the colloid to polymer
size ratioq;Rp/Rc and the fugacitieshzc,zpj of colloids and
polymers, respectively. The fugacityza is related to the
chemical potentialma via za=expsbmad, with a[ hc,pj.

In this work, we consider a size ratioq=0.8 and putRc
;1 to set the length scale. The colloid packing fraction is
defined by hc;s4p /3dRc

3Nc/V, and the polymer packing
fraction by hp;s4p /3dRp

3Np/V. Here,Nc sNpd denotes the
number of colloidsspolymersd inside the simulation cell and
V the volume of the simulation cell. Following convention,
we use the quantityhp

r ;zps4p /3dRp
3 to express the polymer

fugacity, rather thanzp itself. In the literature,hp
r is known as

the polymer reservoir packing fraction. It should, however,
not be confused with the actual polymer packing fraction in
the systemhp.

The AO model phase separates into a colloidal vapor and
colloidal liquid, providedq andhp

r are high enoughf16–20g.
For q=0.8, the critical point was located atf8,9g

hp,cr
r = 0.766 ± 0.002, hp,cr= 0.3562 ± 0.0006,

hc,cr= 0.1340 ± 0.0006, mc,cr= 3.063 ± 0.003, s1d

with mc,cr the critical value of the coexistence chemical po-
tential of the colloids andha,cr the critical value ofha, with
a=p,c. Theabove estimates were obtained using the cumu-
lant intersection methodf21g, and by considering field mix-
ing effectsf23,22g.

III. SIMULATION METHOD

We simulate the AO model in the grand canonical en-
semble. In this ensemble, the fugacitieshzc,zpj and the vol-
umeV are fixed, while the number of particles insideV fluc-
tuates. The simulations are performed in cubic boxes with
edge lengthL and using periodic boundary conditions. To
simulate the AO model efficiently, we use a recently devel-
oped cluster movef9,24g.

A. Phase coexistence

During the simulation, we measure the probabilityPshcd
of observing a certain colloid packing fractionhc. At phase
coexistence, the distributionPshcd becomes bimodal, with
two peaks of equal area for the colloidal vapor and liquid
phase. A natural cutoff to separate the vapor from the liquid
phase is provided by the average colloid packing fraction:

khcl =E
0

`

hcPshcddhc, s2d

where we assumePshcd has been normalized to unity:

E
0

`

Pshcddhc = 1. s3d

The equal area rule simply implies that

E
0

khcl

Pshcddhc =E
khcl

`

Pshcddhc. s4d

The above equation provides an accurate numerical measure
to determine phase coexistencef15g.

B. Successive umbrella sampling

Close to the critical point, the simulation moves back and
forth easily between the vapor and liquid phases. Away from
the critical point, at higher polymer fugacity, the free energy
barrier between the two phases increases. In that case, tran-
sitions from one phase to the other phase become more and
more unlikely, and the simulation will spend most time in
only one of the two phases. A crucial ingredient in our simu-
lation is therefore the use of a biased sampling technique
called successive umbrella sampling. This technique was re-
cently developed by Virnau and Müllerf14g and its purpose
is to enable sampling in regions wherePshcd, due to the free
energy barrier separating the phases, is very low.

C. Histogram reweighting

A final ingredient in our simulation is the use of histogram
reweightingf25g. It is based on the observation that the prob-
ability Pshcd measured at one set of model parameterssin
this casezc andzpd can be used to estimatePshcd at different
values of these parameters. Obviously, the gain in computa-
tional efficiency is enormous because in the ideal casePshcd
need only be measured once.

In this work, histogram reweighting is used to locate the
coexistence fugacity of the colloids. Phase coexistence is
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only obtained if the colloid fugacity is chosen just right. This
value is in general not known at the start of the simulation.
However, oncePshcuzc,zpd has been measured at colloid
fugacity zc and polymer fugacityzp, histogram reweighting
can be used to obtainPshcuzc8 ,zpd at any other colloid fugac-
ity zc8 by using the equationf5g

ln PsNcuzc8,zpd = ln PsNcuzc,zpd + Sln
zc8

zc
DNc. s5d

Note that in the above equationhc has been replaced by the
number of colloidsNc. In the simulations, we thus set the
colloid fugacity to unity and apply successive umbrella sam-
pling to obtain the corresponding probability distribution. We
then use Eq.s5d to extrapolatePshcd to that colloid fugacity
at which the equal area rule of Eq.s4d is obeyed. In practice,
it is straightforward to write an automated numerical proce-
dure to achieve this. We emphasize here that extrapolations
in zc are exact, in the sense that no statistical or systematic
errors are introducedsthe term “extrapolation” might suggest
otherwised.

Within successive umbrella sampling, statessor windowsd
are sampled one after the other. In the first window, the num-
ber of colloidsNc is allowed to fluctuate between 0 and 1, in
the second window,Nc is allowed to fluctuate between 1 and
2, and so on. No restriction is put on the number of polymers
though, so in each windowNp will fluctuate freely around
some average equilibrium valuesthe distribution inNp is to a
good approximation Poisson liked. The crucial point is that
by using successive umbrella sampling, data over the entire
range fromNc=0 up to some maximum is obtainedsthe
maximum should be chosen well beyond the liquid peakd.
Therefore, extrapolations inzc swhich essentially “empha-
size” the data of some windows with respect to othersd can
be performed without loss of accuracy.

Histogram reweighting is also used to extrapolate
Pshcuzc,zpd to different polymer fugacitieszp8 to obtain esti-
mates ofPshcuzc,zp8d. To this end, also the distribution of the
number of polymers must be recorded for each window.
Since our implementation of successive umbrella sampling
only puts a bias on the number of colloids, and not on the
polymers, this extrapolation will introduce an error. The ac-
curacy of the estimated distribution deteriorates when the
range zp8−zp over which one extrapolates becomes larger.
Fortunately, since we are primarily interested in the behavior
close to the critical point, the range need not be large and the
error introduced by histogram reweighting is smallf4g. More
importantly, the error can easily be checked for as will be
shown later.

Note that in terms of histogram reweighting, the AO
model is extremely convenient. Since the histograms that
need to be maintained involve integer data onlysnamely
numbers of particlesd the problem of choosing a bin size for
example does not occur.

IV. EXTRACTING OBSERVABLES

The coexistence distributionPshcd is a powerful quantity
because a number of important physical observables can be

extracted from it. For instance, the average packing fraction
of the colloidal vapor can be written as

hc
v = 2E

0

khcl

hcPshcddhc, s6d

and a similar expression holds for the average packing frac-
tion of the colloidal liquid:

hc
l = 2E

khcl

`

hcPshcddhc, s7d

with khcl given by Eq.s2d. In these and following equations,
the normalization condition of Eq.s3d is assumedsthis also
explains the origin of the factors of two in the above two
equationsd.

For the AO model, we define in the two-phase region half
the difference in colloid packing fraction between the vapor
and liquid phase as order parameter. The order parameter is
denotedMc:

Mc ;
hc

l − hc
v

2
=E

0

`

uhc − khcluPshcddhc, s8d

and the coexistence diametersor rectilinear diameterd is
given by

Dc ;
hc

l + hc
v

2
, s9d

where the subscripts “c” emphasize that the definitions are
expressed in terms of the colloid packing fraction, and not
the polymer packing fraction.

In a similar way, we identify the “concentration suscepti-
bility” or compressibility as the variance of the peaks in
Pshcd f26g. In the two-phase regionshp

r .hp,cr
r d, we define

the susceptibility of the colloidal vapor as

xc
v = VFS2E

0

khcl

hc
2PshcddhcD − shc

vd2G , s10d

and the susceptibility of the colloidal liquid as

xc
l = VFS2E

khcl

`

hc
2PshcddhcD − shc

l d2G , s11d

where the factors of two are again consequence of the nor-
malization condition of Eq.s3d. Note also the presence of the
volume V in the above definitions. In the one-phase region
shp

r ,hp,cr
r d, the distribution Pshcd will loose its bimodal

structure and become single peaked. In this regime the cor-
rect definition for the susceptibility readsf3,4g

xc = VFSE
0

`

hc
2PshcddhcD − khcl2G , s12d

with khcl given by Eq.s2d.
The above definitions are easily modified to define the

corresponding observables for the polymer phasesssimply
replace the subscript “c” by “p”d. Since our simulations also
store the polymer histograms, coexisting packing fractions
and susceptibilities can be calculated for these phases as
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well. Note that the above definitions are additionally attrac-
tive from a numerical point of view because the integrations
over hc tend to average out the statistical fluctuations that
may be present inPshcd.

The interfacial tension is extracted from the logarithm of
the probability distribution:W; ln Pshcd. Since W corre-
sponds to the free energy of the system, the height of the
peaks inW may be identified as the free energy barrier sepa-
rating the colloidal vapor from the colloidal liquidf27g. In
Fig. 1 the barrier is markedFL, where the subscriptL em-
phasizes that the data stem from a finite simulation box of
sizeL. In practice,FL is extracted fromW via

FL = W+ − W−, s13d

where W+ is the average ofW in the peaks:W+=sWv

+Wld /2, andW− the value ofW at the minimum between the
peakssthe symbolsWv and Wl are defined in Fig. 1d. The
corresponding interfacial tension for the finite system reads
f27g

sL = FL/s2L2d, s14d

where the factor of two stems from the use of periodic
boundary conditions which yield the formation of two inter-
faces in the system.

V. CRITICAL BEHAVIOR

Essential in the study of critical phenomena is some mea-
sure of distance from the critical point. As measure of dis-
tance we use in this work the parameter

t = shp
r /hp,cr

r − 1d, s15d

which is positive in the two-phase regionshp
r ,hp,cr

r d and
negative in the one-phase regionshp

r ,hp,cr
r d. This implies

that in the one-phase region we must use −t.
When the critical point is approached from the two-phase

region,M ands vanish precisely, whilex diverges. Common
symbols have been established to denote the critical expo-
nents and critical amplitudes of the associated power laws:

M = Btb, s = s0t
2n, x = sG−dt−g, s16d

where hyperscaling has been assumedsvalid for systems that
belong to the 3D Ising universality classd.

When the critical point is approached from the other side,
namely the one-phase region,M ands remain zero, whilex
diverges

x = G+s− td−g, s17d

but with a different critical amplitudeG+.
The critical behavior of the coexistence diameterD in the

two-phase region is given byf28,29g

D − Xcr = At1−a, s18d

with Xcr the packing fraction at criticality, given byhc,cr
shp,crd in case of the colloidspolymerd coexistence diameter.
In the one-phase regionD is not well defined because the
distinction between a colloidal vapor and liquid is then no
longer possible.

For the 3D Ising universality class, the critical exponents
are given by

b = 0.324, g = 1.239,

n = 0.629, a = 0.113. s19d

Also certain combinations of the critical amplitudes are uni-
versalf11–13g. Of importance in this work are the ratios

U2 = G+/G− < 4.76 ± 0.24, s20d

w2Rs
3/2 =

s0
3/2G−

B2 < 0.13 ± 0.04, s21d

sRs
+d3/2

Qc
=

s0
3/2G+

B2 < 0.71 ± 0.13, s22d

with values taken from Ref.f11g, wherekBT is used as the
unit of energy. The ranges represent the spread in different
estimates obtained from experiment, simulation, and theory.
Note that the ranges are quite substantial, indicating that the
determination of critical amplitudes is still a challenge.

VI. FINITE SIZE SCALING

In a computer simulation, the critical power laws given in
the previous section cannot be observed directly. As ex-
plained before, this is related to the correlation length which
diverges at the critical point and hence cannot be captured in
a finite system of sizeL. However, it is possible to perform

FIG. 1. Logarithm of the probability distributionW; ln Pshcd
for an AO model withq=0.8 andhp

r =0.765 at coexistence. The
data were obtained in a cubic simulation cell with edgeL=21.0 and
using periodic boundary conditions. The peak at lowhc corresponds
to the colloidal vapor, the peak at highhc to the colloidal liquid.
Wv sWld denotes the maximum value of the colloidal vaporsliquidd
peak.W− is the minimum value ofW between the two peaks.FL

corresponds to the free energy barrier separating the vapor phase
from the liquid phase.
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several simulations at different system sizes and use the pre-
dictions of finite size scaling theory to extrapolate to the
thermodynamic limit. Reviews of the subject are abundant in
the literaturef3–5g. In this section, we will therefore be brief
and only reproduce the equations required for our analysis.

A. Finite size scaling ofM, x, and D

According to finite size scaling theory, the order param-
eter ML obtained in a finite system of linear dimensionL
close to the critical point shows a systematicL dependence
that can be written asf5g

ML = L−b/nM0stL1/nd, s23d

with t the distance from the critical point, critical exponents
hb ,nj and M0 some function independent of system size
sM0 is called a scaling functiond. The critical exponents ap-
propriate for the AO model are the 3D Ising exponents listed
in Eq. s19d. SinceM0 is system size-independent, this im-
plies that plots ofLb/nML versustL1/n should all collapse
onto one master curve, provided the correct values of the
critical polymer fugacity and the critical exponents are used.
Such scaling plotsf4g thus give an indication of whether the
assumed universality class is indeed correct. Moreover, for
largetL1/n sbut still within the critical region of coursed such
plots should approach the power law behavior of the thermo-
dynamic limit. This is best visualized if a double logarithmic
scale in the scaling plot is used. The data should then ap-
proach a straight line, with slopeb and intercept equal to the
critical amplitudeB.

The scaling behavior of the susceptibility is analogously
given by

xL = Lg/nx0stL1/nd. s24d

In this case, the appropriate quantities for the scaling plot are
L−g/nxL and tL1/n. On a double logarithmic scale, the data
should approach a straight line, with slope −g and intercept
equal to the critical amplitudeG− or G+ sdepending on
whether the critical point is approached from the one-phase
or the two-phase regiond.

By presenting the simulation data in the form of scaling
plots, measurements of the critical amplitudes become pos-
sible. The accuracy of the method increases when larger sys-
tem sizes are used. In order for finite size scaling theory to
apply, it is important that the simulations are performed in
the so-called scaling regime. At which system sizeL the
scaling regime begins, varies from system to system and isa
priori not known. If, however, the considered system sizes
are too small, it will show in the corresponding scaling plots
as systematic deviations from any data collapse onto a mas-
ter curve. Alternatively, one could consider corrections to
finite size scaling theory for these smaller systemsf30g.

In principle, a finite size scaling analysis of the coexist-
ence diameterD is also possible. In this case, the appropriate
scaling plot issD−XcrdLs1−ad/n expressed as a function of
tL1/n. In practice, however, it is difficult to distinguish in
simulation data the termt1−a in Eq. s18d from the next order
term in the series expansionswhich would be linear intd
because the critical exponenta is rather small. The accuracy
of such scaling plots is therefore usually rather poor.

B. Finite size scaling ofs

The interfacial tension in the thermodynamic limits` sin
d dimensionsd is related to the free energy barrier of the finite
systemFL via f27g

expsFLd = ALx exps2Ld−1s`d, s25d

where trivial factors ofkBT have been dropped. Taking the
logarithm on both sides, the above equation can be written as

sL = s` +
x ln L

2Ld−1 +
ln A

2Ld−1 , s26d

with sL the interfacial tension of the finite system given by
Eq. s14d and constantshx,Aj that are generally not known.
While it is not possible to measures` directly, it is possible
to measure the interfacial tension of the finite systemsL for
several system sizesL, and then use the above equation to
extrapolate to the thermodynamic limit.

One attractive feature of Eq.s26d is that it does not de-
pend on the critical exponentn and can therefore be applied
without prior knowledge of the universality class of the sys-
tem. In other words, it can be used to measuren as is dem-
onstrated in Ref.f31g for the Lennard-Jones fluid. For the
AO model, the universality class is already knownf8,9g. In
this case, Eq.s26d still provides a powerful consistency
check: if the universality class of the AO model is indeed 3D
Ising, it should be possible to extract the exponentn from the
simulation data.

The issue here is how to perform the extrapolations in
practicef32–34g. Ideally, the simulation data for the different
system sizes should be extrapolated to the thermodynamic
limit using two-parameter fits in the variables lnsLd /Ld−1 and
1/Ld−1. This approach, however, may have numerical prob-
lems associated with it. Typically, only data over a relatively
small range of different system sizes is availablesthis is cer-
tainly the case for a nontrivial mixture like the AO modeld. It
will be difficult to separate the lnsLd /Ld−1 term accurately
from the 1/Ld−1 term over such a small range. Therefore, this
extrapolation scheme will likely lead to poor precision.

Alternatively, one can argue that for smallL it may occur
that ux ln Lu, uln Au, in which case an extrapolation in the
single variable 1/Ld−1 is most appropriate, whereas for large
L the single variable lnsLd /Ld−1 is the better choicef27g. In
Ref. f31g, for example, the extrapolations are performed in
the single variable lnsLd /Ld−1. Since it isa priori not clear
which of the above extrapolation methods is the most accu-
rate, all are investigated in this work.

VII. RESULTS

The following results stem from simulations of the AO
model with q=0.8 performed in cubic boxes with edge
lengthL and using periodic boundary conditions. The dimen-
sionality of the simulations isd=3. In order to apply finite
size scaling, the following system sizes are considered:L1
=15.5, L2=16.7, L3=17.7 andL4=21.0. For each system
size, the coexistence probabilityPshcd is measured accu-
rately at one value ofhp

r chosen in the vicinity of the critical
point. Histogram reweighting is used to extrapolatePshcd to
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other values ofhp
r . We also performed a number of shorter

simulations to explicitly measurePshcd at different values of
hp

r . The results of these simulations were used to check the
consistency and accuracy of the extrapolated distributions.
The quality of our data is such that extrapolations over the
rangehp

r <0.72 tohp
r <0.83 can be carried out reliably.

A. Order parameter and binodal

The critical behavior of the order parameter of the col-
loids Mc is analyzed in the scaling plot of Fig. 2. The col-
lapse of the simulation data from the different system sizes
onto one master curve is clearly visible. The scaling plot for
the order parameter of the polymersMp looks similar and is
not shown. In our analysis, the critical polymer fugacityhp,cr

r

was used as a free parameter and tuned until the best collapse
occurred. By performing a linear least squares fit to the tails
of the master curves, the critical amplitudes can be obtained.
The corresponding critical power laws are given in Table I,
which also lists the value ofhp,cr

r that was used in the scaling
plots. Naturally, this value ofhp,cr

r should agree with the
previous estimate listed in Eq.s1d. The critical amplitudes
obtained from the fits are sensitive to the range over which
the fit is performed: the variation is used as a measure for the
error in Table I.

The critical behavior of the coexistence diameter of the
colloids Dc is presented in Fig. 3. In this case, the best col-
lapse of the data occurs athp,cr

r =0.771 which is not in agree-
ment with Eq. s1d. Some discrepancy is to be expected
though because the singularity in the coexistence diameter is
very weak, which makes it hard to discern it from simulation
data. The behavior of the data in the tails, however, seems
rather well described by the exponent 1−a. The correspond-
ing scaling plot for the coexistence diameter of the polymers
Dp is shown in Fig. 4. In this case, the curvature of the data
for small t seems in error. Therefore, we conclude that our
simulation data is not accurate enough to reliably extract the
critical behavior of the coexistence diameter. The power laws

for Dc andDp, given for completeness in Table I, must there-
fore be treated with some care.

By combining the expressions forMc andDc in Table I,
the colloid packing fractions of the vapor and liquid phase
shc

v andhc
l d can be written as functions ofhp

r . These expres-
sions, which are valid close to the critical point in the ther-
modynamic limit, describe the binodal of the AO model in
reservoir representation. The resulting binodal is shown in
Fig. 5, together with the raw simulation data from the vari-
ous system sizes. The figure clearly shows the familiar finite-
size deviation of the simulation data close to the critical
point f4g.

B. Susceptibility

Next, we consider the critical behavior of the susceptibil-
ity. Figure 6 shows the scaling plot of the susceptibility of
the colloidal phasexc in the one-phase region. The critical

FIG. 2. 3D Ising scaling plot for the order parameter of the
colloids Mc given by Eq.s8d for the AO model withq=0.8 in the
two-phase region. The choice of axis is explained in the text. The
critical amplitude is extracted by means of a fit to the tail of the
data, see also Table I.

TABLE I. Summary of the critical behavior of the AO model
with q=0.8. Shown are the critical power laws in the one-phase and
two-phase regions of various physical quantities obtained in scaling
plots. Listed in the last column is the value ofhp,cr

r at which the best
collapse in the corresponding scaling plot was observedsprovided
here to give an indication of the consistency of our resultsd. The
symbolsM, D, x, ands are defined in Sec. IV, while the critical
exponents are listed in Eq.s19d.

One-phase region Two-phase region hp,cr
r

Mc – s0.27±0.02dtb 0.765

Mp – s0.69±0.01dtb 0.765

Dc−hc,cr – s0.12±0.01dt1−a 0.771

Dp−hp,cr – s0.41±0.01dt1−a 0.766

xc s0.22±0.03ds−td−g 0.766

s0.056±0.005dt−g 0.766

xp s1.24±0.08ds−td−g 0.765

s0.3±0.1dt−g 0.768

s – s0.26±0.02dt2v 0.766

FIG. 3. Scaling plot of the coexistence diameter of the colloids
Dc. The value ofXcr=hc,cr used in this plot was taken from Eq.s1d.
Allowing variations inXcr did not improve the collapse of the data.
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power law extracted from this plot is listed in Table I. The
scaling plot for the susceptibility of the polymer phasexp in
the one-phase region is qualitatively similar and not shown.
Instead, only the critical power law is given in Table I.

Measurements of the susceptibility in the two-phase re-
gion are prone to a number of potential numerical pitfalls.
Since the susceptibility is a second order moment of the
distributionPshcd, it is generally more sensitive to statistical
errors than first order moments like the order parameter. For
asymmetric systems like the AO model, the additional prob-
lem arises that the statistics in the liquid peak ofPshcd are
systematically better than in the vapor peak: simply because
the liquid peak contains more colloids. These problems will
of course vanish with increasing system size. However, for a
nontrivial system like the AO model, the system sizes that
can be handled today are unfortunately still in the regime
where these subtleties come into play.

In case of the colloidal vapor and liquid in the two-phase
region, the relevant susceptibilities arexc

v given by Eq.s10d

and xc
l given by Eq.s11d. In principle, close to the critical

point, the susceptibility should be the same in both phases. In
practice, there will be differences due to the numerical diffi-
culties outlined above. Two procedures are now conceivable:
s1d use the average ofxc

v and xc
l as best estimate of the

susceptibility, ors2d use onlyxc
l . Which of these procedures

is the best needs to be checked with the data available. In our
case, the susceptibility of the colloidal phase in the two-
phase region was best described using onlyxc

l . The resulting
scaling plot is shown in Fig. 7 and the corresponding power
law in Table I. The collapse of the data is clearly visible, but
unlike Fig. 6, the slope of the data for larget is not quite −g.
A less satisfactory fit is expected though, because the statis-
tics in Fig. 7 are significantly worse compared to Fig. 6 since
only half the data is used. The susceptibility measurements
of the polymer phases in the two-phase region were most
accurate if the averagesxp

l +xp
vd /2 was used. The correspond-

ing power law is listed in Table I.
In Fig. 8 we plot the susceptibility of the colloids as func-

tion of hp
r in the vicinity of the critical point. Shown are the

raw simulation data as well as the critical power laws of
Table I. Clearly demonstrated is the familiar finite-size

FIG. 4. The analogue of Fig. 3 for the coexistence diameter of
the polymersDp. Xcr=hp,cr was taken from Eq.s1d.

FIG. 5. Phase diagram of the AO model in reservoir represen-
tation. The solid curvesL=`d shows the binodal in the thermody-
namic limit obtained using the power laws forMc andDc listed in
Table I sherehp,cr

r =0.766 was usedd. The dashed/open curves are
raw simulation data for various finite system sizesL as indicated.
The bar marks the location of the critical point given by Eq.s1d.

FIG. 6. Scaling plot of the susceptibility of the colloidal phase
xc in the one-phase region. In this case Eq.s12d is used to measure
xc.

FIG. 7. Scaling plot of the susceptibility of the colloidal liquid
xc

l given by Eq.s11d in the two-phase region.
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rounding of the raw simulation data in the vicinity of the
singularity f4g.

C. Interfacial tension

As mentioned before, the finite size extrapolation of the
interfacial tension is less straightforward and various meth-
ods can be used. Since the number of different system sizes
considered by us is rather small, multiparameter fits such as
the ones investigated in Ref.f33g are out of the question.
Instead, we investigate single parameter fits only, which in
this case essentially means choosing lnsLd /Ld−1 or 1/Ld−1 as
scaling variable. The results of both extrapolation procedures
for a number of differenthp

r are summarized in Figs. 9 and
10. The extrapolations produce meaningful estimates up to
hp

r <0.80.
The fits in Figs. 9 and 10 seem equally accurate, and

based on these figures alone we cannot reject one extrapola-
tion method in favor of the other. The issue is resolved when
the interfacial tensions` in the thermodynamic limit itself is
considered. In this case, the critical power laws`=s0t

2n is
valid which implies that plots ofs` versust on double loga-
rithmic scales should collapse onto straight lines, provided
the correct value ofhp,cr

r in t is used. Note thathp,cr
r is the

only free parameter: the critical exponentn follows auto-
matically from the slope of the line. The resulting plots are
shown in Figs. 11 and 12, in which lnsLd /Ld−1 and 1/Ld−1

were used as scaling variable, respectively, andhp,cr
r in each

plot was tuned until the best collapse occurred. In these fig-
ures, measurements of the interfacial tension up tohp

r =0.79
were used.

One important observation is that both data sets in Figs.
11 and 12 accurately reproduce the expected slope 2n
<1.26 corresponding to 3D Ising behavior. However, if
lnsLd /Ld−1 is used as scaling variable, the best collapse is
obtained athp,cr

r =0.7696, which is not in agreement with the
previous estimate of Eq.s1d. On the other hand, if 1 /Ld−1 is

used, the best collapse is observed athp,cr
r =0.7661, which is

in excellent agreement with Eq.s1d. Therefore, we conclude
post priori that 1/Ld−1 is the appropriate scaling variable for
our problem. The corresponding power law obtained from
Fig. 12 is listed in Table I. The effect of using the incorrect
scaling variable seems to be that the critical point is not
correctly estimated, while the critical exponent is less af-
fected. It thus seems wise practice to always compare the
critical point obtained from finite size extrapolations of the
interfacial tension to some other independent estimatesthis
estimate could for instance be obtained using the cumulant
intersection methodd.

Note that scaling with 1/Ld−1 is also consistent with the
expected finite size scaling ofPshcd near the critical point.
Close to the critical point, the distributionPshcd scales with
the system size asf21,35,36g

FIG. 8. Susceptibility of the colloidsxc across the phase transi-
tion. The solid curve shows the susceptibility in the thermodynamic
limit given by the critical power laws of Table I withhp,cr

r =0.766.
The remaining curves show the raw simulation data of the various
system sizesL.

FIG. 9. Finite size extrapolation of the interfacial tension in
lnsLd /Ld−1. This extrapolation scheme corresponds to the assump-
tion ln A=0 in Eq. s26d. Shown in the above plot is the interfacial
tension of the finite systemsL as function of lnsLd /Ld−1 for various
values ofhp

r as indicated. The straight lines are linear least squares
fits to the data. The intercept of these lines with the ordinate yields
an estimate for the interfacial tensions` in the thermodynamic
limit.

FIG. 10. The analogue of Fig. 9 but using 1/Ld−1 as scaling
variable instead. This extrapolation scheme corresponds to the as-
sumptionx=0 in Eq. s26d.
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PLshcd = b0L
b/nP0sb0L

b/nhcd, s27d

wherePLshcd is the distributionPshcd measured in the finite
system of sizeL, b0 some non-universal constant, andP0 a
function independent of system size. According to Eq.s13d,
the free energy barrierFL is given by the peak-to-valley
height in the logarithm ofPLshcd. The above scaling property
thus implies thatFL becomesL independent close to the
critical point. As a result, the interfacial tension should scale
with 1/Ld−1. It is worth noting that for the 2D Ising model
Berget al. also found that the extrapolation of the interfacial

tension is most consistent ifx=0 is assumed in Eq.s26d f33g.
Of course, our data do not exclude that away from the critical
point, a term proportional to lnsLd /Ld−1 may well become
important.

D. Critical amplitude ratios

We now turn to the critical amplitude ratios that can be
extracted from Table I. We first calculateU2 given by Eq.
s20d. If we consider the colloidal phases we obtainU2
=3.9±0.9. The corresponding ratio for the polymers is found
to beU2=4.1±1.9. Within the error bars, these estimates are
compatible with Eq.s20d. The quantityw2Rs

3/2 is found to be
0.10±0.04 for the colloidal phases, and 0.08±0.04 for the
polymer phases. This is again compatible with Eq.s21d, al-
though one must be aware of the large error bars in our
estimates. Finally, the quantitysRs

+d3/2/Qc is found to be
0.40±0.16 for the colloids, and 0.35±0.07 for the polymers.
In this case, we systematically underestimate the values
listed in Eq.s22d. Note, however, that the discrepancy with
the 3D Ising values is not too severe. Given the difficulty in
general of measuring critical amplitudes, even in the case of
simple lattice modelsf11g, the agreement we obtain is al-
ready quite remarkable.

VIII. SUMMARY AND OUTLOOK

In summary, we have studied the critical behavior of the
order parameter, interfacial tension, susceptibility and coex-
istence diameter of the AO model with colloid to polymer
size ratioq=0.8. An important result is that the critical ex-
ponent of the interfacial tension equals the expected 3D Ising
value 2n<1.26. This critical behavior is consistent with pre-
vious simulationsf8,9g, and also with experimental work
f37g in which 3D Ising critical behavior was observed in real
colloid-polymer mixtures. The critical behavior of the order
parameter and the susceptibility are also 3D Ising like. Our
data for the coexistence diameter is not conclusive. This is
related to the small value of the critical exponenta, which
makes it difficult to accurately resolve the critical behavior
from the simulation data. More accurate simulations of larger
systems are required to resolve this.

We found that the critical amplitude ratios obtained from
our simulations are compatible with the 3D Ising universality
class. This confirms the consistency of our data, and is en-
couraging considering the AO model is an asymmetric bi-
nary mixture and therefore difficult to simulate. We empha-
size, however, that our estimates for the critical amplitudes
should be regarded as consistency checks only. Their accu-
racy cannot compete with that obtained in, for example, di-
rect simulations of the 3D Ising lattice model.

We have demonstrated that finite size scaling methods are
equally applicable to rather complex systems like the AO
model, and can be used to obtain results with meaningful
accuracy. Regarding finite size extrapolations of the interfa-
cial tension, our analysis shows that close to the critical
point, the most consistent fits are obtained by ignoring the

FIG. 11. Interfacial tension in the thermodynamic limits` as
function of t on a double logarithmic scale, where lnsLd /Ld−1 was
used as scaling variable. The best collapse onto a straight line is
observed athp,cr

r =0.7696, which is not in agreement with Eq.s1d.
The slope of the line yields the critical exponent of the interfacial
tension, for which we find 2n=1.25±0.01.

FIG. 12. The analogue of Fig. 11 in which 1/Ld−1 is used as
scaling variable instead. The best collapse occurs athp,cr

r =0.7661,
which is in excellent agreement with Eq.s1d. For the critical expo-
nent we obtain 2n=1.26±0.01 and for the critical amplitudes0

=0.26±0.02.
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lnsLd dependent term in Eq.s26d. For the AO model, we also
observed that by using the incorrect scaling variable, the
critical point in particular is not estimated correctly.

This work provides additional insight into the critical be-
havior of the AO model. For a complete understanding, the
critical behavior of the correlation length should still be in-
vestigated. While the corresponding critical exponent is of
course known, namely −n, the critical amplitude is not. This
critical amplitude, however, cannot be extracted from the
probability distributionPshcd. The usual approach to study
the correlation length is to consider the static structure factor
insteadf26g. This requires additional simulations which are

beyond the scope of this work, and will be postponed to a
future publication.
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