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Critical phenomena in colloid-polymer mixtures: Interfacial tension, order parameter,
susceptibility, and coexistence diameter
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The critical behavior of a model colloid-polymer mixture, the so-called Asakura-Oo&a@a model, is
studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension,
the order parameter, the susceptibility, and the coexistence diameter. Our results clearly show that the interfa-
cial tension vanishes at the critical point with exponent=2L.26. This is in good agreement with the 3D Ising
exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the correspond-
ing 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size
scaling is applied to the AO model. In particular, we find that close to the critical point, the finite size
extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored.
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[. INTRODUCTION simulations and finite size scaling to address these issues.
The quantities that we consider are the order parameter, sus-
By adding nonadsorbing polymer to a colloidal suspen-eptibility, coexistence diameter, and interfacial tension,
sion, phase separation may be induced. This leads to thehereby the critical point is approached along different
formation of two coexisting fluid phases, separated by arpaths: from the one-phase region and along the coexistence
interface[1,2]. The phases are characterized by their colloidline.
density, which is high in one phase, and low in the other. In  The AO interfacial tension is of particular importance,
order to make the analogy to the fluid-vapor transition inbecause it gives an indication of the strength of capillary
atomic liquids, the colloid rich phase is usually called thewaves. This is an issue ifmean-field density functional
colloidal liquid, and the colloid poor phase the colloidal va- theories of the AO model. Following Reff10], the gtren_gth
por. Obviously, the density of the polymers is exactly the®f the capillary waves is estimated by=kgT/(470¢%), with
opposite: high in the colloidal vapor and low in the colloidal @ the interfacial tensiong the correlation length in the two-
liquid. phase regionT th_e temperature, arjq3 the Boltzmann con-
In the vicinity of the critical point, a number of important Stant. For 3D lsing critical behavior, hyperscaling implies
physical quantities are described by simple power laws of thdat @ is constant in the cr|t|cal~reg|me. Note that this con-
form At2. Here,t is some measure of distance from the criti- Stant is universal and given by~0.8[11]. In contrast, for

) ) " . " mean-field critical behavior, one would observe a decay of
cal point,A is called the critical amplitude, ari8lthe critical the form w=t-Y2 The mean-field behavior and the 3D Ising

exponent[3]. To desqnbe the cr|t.|cal phase bghawor, ON€hehavior of the capillary strength are thus profoundly differ-
thus needs to determine the location of the critical point, theyns “Therefore, it is important to establish the universality
critical exponents and the critical amplitudes. These quantiz|zss of the AO model. For this purpose, an analysis of the
ties can for instance be obtained in computer simulationgpterfacial tension is particularly suitable. To determine the
provided finite size scaling methods are used. Finite siz@yitical behavior of the interfacial tension, finite size scaling
scaling is required because the correlation length diverges @tethods can be used that do not require prior knowledge of
the critical point. Since the accessible system size in a simuhe universality class. This enables a direct measurement of
lation is finite, the true critical behavior is obscured as soorthe critical exponent, and the corresponding critical ampli-
as the correlation length exceeds the size of the simulatiotude. For the AO model, we obtain for the interfacial tension
box [3,4]. Finite size scaling offers a way to properly ex- a critical exponent 2=1.26, which is in excellent agreement
trapolate the data obtained in simulations to the thermodywith the 3D Ising value.
namic (=infinite system limit [5]. The critical amplitudes are used to test the universality of
In this work, we study the critical behavior of the colloid- a number of critical amplitude ratios. Following Stauffer
polymer model introduced by Asakura and Oos&@@] (the  [12,13], universality implies that only two amplitudes are
so-called AO model In previous simulations, we have de- required to determine the remaining amplitudes. This allows
termined the critical point of the AO modéior one choice us to relate the critical amplitudes of the AO model obtained
of colloid-to-polymer size ratipand we have provided evi- in this work, to independent estimates obtained in experi-
dence that this system belongs to the 3D Ising universalitynental, theoretical, and simulational studies of completely
class [8,9]. However, we have not yet studied in detalil different system$11,13. We observe reasonable agreement,
whether we can recover the critical exponents, nor have wbut emphasize that the error bars, in both our estimates and
determined the critical amplitudes. The latter quantities ar¢hose in the literature, are quite substantial.
of interest because certain critical amplitude ratios are pre- Note that an investigation of the AO critical behavior is
dicted to be universal. In this work we combine computerfar more complex than an equivalent study of the 3D Ising
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lattice model would be. For instance, the binodal of the AO [1. SIMULATION METHOD
model is asymmetric, and this gives rise to an additional

critical power law for the coexistence diameter. Moreover,semble. In this ensemble, the fugacities, z,} and the vol-

the AO model belongs to the class afymmetric binary Vv fixed while th ber of particles insiddi
mixtures which are generally difficult to simulate. In case of umev-are fixed, while the number of particies insiueiuc-
tuates. The simulations are performed in cubic boxes with

the AO model, the accuracy required to apply finite size scal-

ing became available only after the recent introduction of aedge lengthL. and using periodic boundary conditions. To

grand canonical Monte Carlo cluster mol@ and succes- simulate the AO model efficiently, we use a recently devel-
sive umbrella samplinffl4]. Note also that the application of oped cluster movgo,24).

finite size scaling to asymmetric mixtur¢s5] is far less

common compared to that of symmetric mixtufds A. Phase coexistence

The outline of this paper is as follows. First, the AO During the simulation, we measure the probabiRt,)

model is introduced. We then move on to describe the simuc—)f observing a certain colloid packing fractiop. At phase

lation techniques used by us. Next, we explain how the ordegqeyistence, the distributioR(7,) becomes bimodal, with
parameter, susceptibility, interfacial tension and coemstencgNo peaks of equal area for the colloidal vapor and liquid

diameter are extracted from the simulation data. The extrap(Ehase A natural cutoff to separate the vapor from the liquid

We simulate the AO model in the grand canonical en-

lation of these quantities to the infinite system is discussed ify, < is provided by the average colloid packing fraction:
Sec. VI. We then present our results and end with a summa '

in the last section. *
<77c> = 77cP( 77c)d s (2)
0

Il. THE AG MODEL where we assumB(7.) has been normalized to unity:

The AO model was proposed in 195@] and later inde- oc
pendently by Vrij[7] as a simple description for colloid- f

polymer mixtures. In this model, colloids and polymers are

treated as spheres with respective raglii and R,. Hard
sphere interactions are assumed between colloid-cdltad
and colloid-polymer(cp) pairs, while polymer-polymefpp) f<nc>

P(n)dn.=1. (3
0

The equal area rule simply implies that

pairs can interpenetrate freely. Since all allowed AO configu-
rations have zero potential energy, temperature plays a trivial

role, and the phase behavior is set by the colloid to polymefrhe above equation provides an accurate numerical measure

size ratioq=R,/R; and the fugacitie$z, z,} of colloids and g determine phase coexister{de).
polymers, respectively. The fugacity, is related to the

chemical potentiak, via z,=expBu,), with aE{c, p}.

In this work, we consider a size ratap=0.8 and putR;
=1 to set the length scale. The colloid packing fraction is Close to the critical point, the simulation moves back and
defined by 7705(477/3)R§NCIV, and the polymer packing forth e_gsily bgtween t'he vapor and liquid _phases.Away from
fraction by an(4qT/3)Rng/V_ Here, N (N,) denotes the the grltlcal point, at higher polymgr fugacity, the free energy
number of colloids(polymers inside the simulation cell and b_a_rrler between the two phases increases. In that case, tran-
V the volume of the simulation cell. Following convention, Sitions from one phase to the other phase become more and
we use the quantityy{,zzp(4a-r/3)Rg to express the polymer Mmore unlikely, and the S|mulat|on_W|[I spen_d m_ost tlmg in
fugacity, rather thaa, itself. In the literaturez, is known as only one of the two phases. A crucial ingredient in our simu-
the polymer reservoir packing fraction. It should, however lation is therefore the use of a biased sampling technique
not be confused with the actual polymer packing fraction inc@/léd successive umbrella sampling. This technique was re-
the systemy,, pently developed l_ay V_|rnau _and Mullgt4] and its purpose

The AO model phase separates into a colloidal vapor anff 10 €nable sampling in regions wheér.), due to the free
colloidal liquid, providedq and 77, are high enoughl6-20.  €nergy barrier separating the phases, is very low.

For q=0.8, the critical point was located F8,9]

P( 7]c)d770: f P(Wc)dﬂc- (4)
7

0 (ne)

B. Successive umbrella sampling

C. Histogram reweighting

[ —_ —
Mp.cr= 0.766 £0.002, 7,,¢,=0.3562 +0.0006, Afinal ingredient in our simulation is the use of histogram

reweighting[25]. It is based on the observation that the prob-
Te,er= 0.1340 £ 0.0006, wc=3.063+0.003, (1) ability P(7.) measured at one set of model parameters
this casez, andz,) can be used to estimaR¥ 7,) at different
with u. . the critical value of the coexistence chemical po-values of these parameters. Obviously, the gain in computa-
tential of the colloids andy, ., the critical value ofyp,, with  tional efficiency is enormous because in the ideal ¢(sg)
a=p,c. Theabove estimates were obtained using the cumuneed only be measured once.
lant intersection methof21], and by considering field mix- In this work, histogram reweighting is used to locate the
ing effects[23,22. coexistence fugacity of the colloids. Phase coexistence is
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only obtained if the colloid fugacity is chosen just right. This extracted from it. For instance, the average packing fraction
value is in general not known at the start of the simulation.of the colloidal vapor can be written as

However, onceP(r;C|zc,zp) has been measured at colloid (n0

fugacity z; and polymer fugacityz,, histogram reweighting =2 f 7P(7:)d 7, (6)

can be used to obtaif(7,|z;,z, at any other colloid fugac- 0

ity z; by using the equatiofb] and a similar expression holds for the average packing frac-

, z tion of the colloidal liquid:
In P(N|Z¢,Z,) = In P(No|z,Z,) + Inz—c N. (5)

7=2 J{ nP(n)dne, (7)

Note that in the above equatiop has been replaced by the 70

number of colloidsN,. In the simulations, we thus set the . ) . _
colloid fugacity to unity and apply successive umbrella samWith {7c) given by Eq.(2.).. In these an_d following equations,
pling to obtain the corresponding probability distribution. We the normalization condition of Eq3) is assumedthis also
then use Eq(5) to extrapolateP(7,) to that colloid fugacity expla|_ns the origin of the factors of two in the above two
at which the equal area rule of E@) is obeyed. In practice, ©duations o .

it is straightforward to write an automated numerical proce- FOF the AO model, we define in the two-phase region half

dure to achieve this. We emphasize here that extrapolatiori8€ difference in colloid packing fraction between the vapor
in z, are exact, in the sense that no statistical or systematignd liquid phase as order parameter. The order parameter is

errors are introducetthe term “extrapolation” might suggest enotedM:
otherwise. ,7'C - %
Within successive umbrella sampling, stateswindows M. = BCE f | 7 = {m)| P(77c)d7pe, (8)
0

are sampled one after the other. In the first window, the num-
ber of colloidsN_ is allowed to fluctuate between 0 and 1, in gng the coexistence diametéor rectilinear diameteris
the second windowh is allowed to fluctuate between 1 and gjyen by
2, and so on. No restriction is put on the number of polymers
though, so in each window,, will fluctuate freely around

some average equilibrium val@the distribution inN, is to a

good approximation Poisson likeThe crucial point is that

by using successive umbrella sampling, data over the entif¢here the subscripts “c” emphasize that the definitions are
range fromN,=0 up to some maximum is obtainethe expressed in terms of the colloid packing fraction, and not

maximum should be chosen well beyond the liquid peak the Polymer packing fraction.

|
et 77\c/

D.= ,
¢ 2

9

Therefore, extrapolations iz, (which essentially “empha- !N @ similar way, we identify the “concentration suscepti-

size” the data of some windows with respect to otheen bility” or compressibility as the variance of the peqks in

be performed without loss of accuracy. P(7¢) [26]. In the two-phase regiofi,> 7, ), we define
Histogram reweighting is also used to extrapolatethe susceptibility of the colloidal vapor as

P(7¢|z.z,) to different polymer fugacitieg, to obtain esti- (ne)

mates ofP(|z,z)). To this end, also the distribution of the XX:VKZJO ﬂgp(ﬂc)dﬂc) - (W\é)Z], (10

number of polymers must be recorded for each window.
Since our implementation of successive umbrella samplingind the susceptibility of the colloidal liquid as

only puts a bias on the number of colloids, and not on the .

polymers, this extrapolation will introduce an error. The ac- I _ 2 _ (.2

curacy of the estimated distribution deteriorates when the XC_V[(ZL ncp(%)d%> (70 } a1
range zF’,—zp over which one extrapolates becomes larger. _

Fortunately, since we are primarily interested in the behavioWhere the factors of two are again consequence of the nor-
close to the critical point, the range need not be large and th&alization condition of Eq(3). Note also the presence of the
error introduced by histogram reweighting is snjdll. More ~ volumeV in the above definitions. In the one-phase region
importantly, the error can easily be checked for as will be(7y< ). the distribution P(7,) will loose its bimodal

7e)

shown later. structure and become single peaked. In this regime the cor-
Note that in terms of histogram reweighting, the AO rect definition for the susceptibility read3,4]

model is extremely convenient. Since the histograms that %

need to be maintained involve integer data ofamely Xc—Vl<J ﬂgp(ﬂc)dﬂc> —(1;92], (12

numbers of particlesthe problem of choosing a bin size for 0

example does not occur. with (70) given by Eq.(2).

The above definitions are easily modified to define the

IV. EXTRACTING OBSERVABLES corresponding observables for the polymer phasasply
replace the subscript “c” by “p” Since our simulations also
The coexistence distributioR(7,) is a powerful quantity  store the polymer histograms, coexisting packing fractions
because a number of important physical observables can land susceptibilities can be calculated for these phases as
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-54 ; ' ' ' t= (77;/77{0,cr_ 1), (19

which is positive in the two-phase regiday,< 7)) and
~W, | negative in the one-phase region, < 7, o). This implies

\ that in the one-phase region we must use -

/ When the critical point is approached from the two-phase
Foo/ region,M ando vanish precisely, whilg diverges. Common

i symbols have been established to denote the critical expo-
nents and critical amplitudes of the associated power laws:

66 ] 4w . M=BY, o=oi®, x=()t7, (16
f where hyperscaling has been assurwedid for systems that
68 o belong to the 3D Ising universality cl
000 005 010 015 020 025 elong 1o the sing universality class

When the critical point is approached from the other side,
namely the one-phase regid, and o remain zero, whiley
FIG. 1. Logarithm of the probability distributiov=In P(7.) diverges
for an AO model withq=0.8 and 7;[):0.765 at coexistence. The =T (=1) 17
data were obtained in a cubic simulation cell with etige?1.0 and X= '
using periodic boundary conditions. The peak at lgweorresponds byt with a different critical amplitudé™.

to the colloidal vapor, the peak at high to the colloidal liquid. The critical behavior of the coexistence diamedein the
W, (W) denotes the maximum value of the colloidal vagaguid) two-phase region is given Hi28,29

peak.W_ is the minimum value ofV between the two peak§;

corresponds to the free energy barrier separating the vapor phase D- XC,=At1"‘“, (18)
from the liquid phase.

Me

with X, the packing fraction at criticality, given byy ¢

_ » (770,c0 In case of the colloidpolymen coexistence diameter.
well. Note that the above definitions are additionally attrac-"1;o one-phase regiod is not well defined because the

tive from a numerical point of view be_ca_luse the irlt(.egrations’distinction between a colloidal vapor and liquid is then no
over 7, tend to average out the statistical fluctuations tha‘ionger possible

may be_ presen_t "P(%).' . . For the 3D Ising universality class, the critical exponents
The interfacial tension is extracted from the logarithm of

the probability distribution:W=In P(%.). Since W corre- are given by

sponds to the free energy of the system, the height of the B=0.324, y=1.239,

peaks inW may be identified as the free energy barrier sepa-

rating the colloidal vapor from the colloidal liqui®7]. In v=0.629, «=0.113. (19

Fig. 1 the barrier is marke#,, where the subscrigt em- . L ” . .
phasizes that the data stem from a finite simulation box of\lso certain combinations of the critical amplitudes are uni-

sizeL. In practice,F, is extracted fromW via versal[11-13. Of importance in this work are the ratios
U,=T*T"=4.76£0.24, (20
FL=W,-W_, (13
o s 961
where W, is the average ofW in the peaks:W,=(W, WR; "= B2 0.13£0.04, (21)

+W,)/2, andW_ the value ofW at the minimum between the

peaks(the symbolsW, and W, are defined in Fig. 1 The (RH¥2 o3
corresponding interfacial tension for the finite system reads 6 = 082 ~0.71+0.13, (22
[27] c

with values taken from Ref.11], wherekgT is used as the

oL =F/(2L2), (14)  unit of energy. The ranges represent the spread in different
estimates obtained from experiment, simulation, and theory.
Note that the ranges are quite substantial, indicating that the

where the factor of two stems from the use of periodiCyetermination of critical amplitudes is still a challenge.
boundary conditions which yield the formation of two inter-

faces in the system.
VI. FINITE SIZE SCALING

V. CRITICAL BEHAVIOR In a computer simulation, the critical power laws given in
the previous section cannot be observed directly. As ex-
Essential in the study of critical phenomena is some meaplained before, this is related to the correlation length which
sure of distance from the critical point. As measure of dis-diverges at the critical point and hence cannot be captured in
tance we use in this work the parameter a finite system of siz&. However, it is possible to perform
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several simulations at different system sizes and use the pre- B. Finite size scaling ofo
dictions of finite size scaling theory to extrapolate to the Tha interfacial tension in the thermodynamic lirit (in

thermodynamic limit. Reviews of the subject are abundant iy gimensjonsis related to the free energy barrier of the finite
the literaturg 3—5]. In this section, we will therefore be brief systemF, via [27]

and only reproduce the equations required for our analysis.
o _ exp(F ) = Al exp2L% 10.,), (25)
A. Finite size scaling ofM, x, and D

According to finite size scaling theory, the order param-
eter M| obtained in a finite system of linear dimensian

where ftrivial factors ofkgT have been dropped. Taking the
logarithm on both sides, the above equation can be written as

close to the critical point shows a systemdticlependence xInL InA
that can be written ag5] TL= Ot Tt S (26)
M =LA MmO, (23)

with o the interfacial tension of the finite system given by
with t the distance from the critical point, critical exponents Ed. (14) and constantgx, A} that are generally not known.
{B,v} and M° some function independent of system sizeWhile it is not possible to measure, directly, it is possible
(MCis called a scaling functionThe critical exponents ap- to measure the interfacial tension of the finite systgnfor
propriate for the AO model are the 3D Ising exponents listedseveral system sizes and then use the above equation to
in Eq. (19). Since M° is system size-independent, this im- extrapolate to the thermodynamic limit.

plies that plots ofL#*M, versustLY” should all collapse One attractive feature of Eq426) is that it does not de-
onto one master curve, provided the correct values of th@end on the critical exponemtand can therefore be applied
critical polymer fugacity and the critical exponents are usedWwithout prior knowledge of the universality class of the sys-
Such scaling plot§4] thus give an indication of whether the tem. In other words, it can be used to measus is dem-
assumed universality class is indeed correct. Moreover, fopnstrated in Ref[31] for the Lennard-Jones fluid. For the
largetL"” (but still within the critical region of courgesuch ~ AO model, the universality class is already kno{9]. In
plots should approach the power law behavior of the thermothis case, Eq.(26) still provides a powerful consistency
dynamic limit. This is best visualized if a double logarithmic check: if the universality class of the AO model is indeed 3D
scale in the scaling plot is used. The data should then agsing, it should be possible to extract the exponefrom the
proach a straight line, with slop@ and intercept equal to the simulation data.

critical amplitudeB. The issue here is how to perform the extrapolations in
The scaling behavior of the susceptibility is analogouslypractice[32-34. Ideally, the simulation data for the different
given by system sizes should be extrapolated to the thermodynamic

— Loty Oy v o4 limit using two-parameter fits in the variableglln/L%* and

X =LC). (24) 1/L%L. This approach, however, may have numerical prob-
In this case, the appropriate quantities for the scaling plot arems associated with it. Typically, only data over a relatively
L=y, andtLY”. On a double logarithmic scale, the data small range of different system sizes is availalhés is cer-
should approach a straight line, with slopg and intercept tainly the case for a nontrivial mixture like the AO moydt
equal to the critical amplitudd™~ or I'* (depending on Will be difficult to separate the (h)/L%? term accurately
whether the critical point is approached from the one-phasé&om the 1L term over such a small range. Therefore, this
or the two-phase region extrapolation scheme will likely lead to poor precision.

By presenting the simulation data in the form of scaling Alternatively, one can argue that for smhlit may occur
plots, measurements of the critical amplitudes become poghat [xIn L|<|In A|, in which case an extrapolation in the
sible. The accuracy of the method increases when larger sysingle variable 19! is most appropriate, whereas for large
tem sizes are used. In order for finite size scaling theory td. the single variable If.)/L%" is the better choic€27]. In
apply, it is important that the simulations are performed inRef. [31], for example, the extrapolations are performed in
the so-called scaling regime. At which system sizehe the single variable IfL)/L%!. Since it isa priori not clear
scaling regime begins, varies from system to system aad is which of the above extrapolation methods is the most accu-
priori not known. If, however, the considered system sizegate, all are investigated in this work.
are too small, it will show in the corresponding scaling plots

as systematic deviations from any data collapse onto a mas- VIl. RESULTS
ter curve. Alternatively, one could consider corrections to
finite size scaling theory for these smaller syst¢B8@. The following results stem from simulations of the AO

In principle, a finite size scaling analysis of the coexist-model with q=0.8 performed in cubic boxes with edge
ence diameteD is also possible. In this case, the appropriatelengthL and using periodic boundary conditions. The dimen-
scaling plot is(D-X.)L1™"” expressed as a function of sionality of the simulations isl=3. In order to apply finite
tLY”. In practice, however, it is difficult to distinguish in size scaling, the following system sizes are considetgd:
simulation data the tert~® in Eq. (18) from the next order =15.5, L,=16.7, L3=17.7 andL,=21.0. For each system
term in the series expansidwhich would be linear int)  Size, the coexistence probabilify(7,) is measured accu-
because the critical exponedtis rather small. The accuracy rately at one value 0#7[) chosen in the vicinity of the critical
of such scaling plots is therefore usually rather poor. point. Histogram reweighting is used to extrapolBte;.) to
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TABLE |. Summary of the critical behavior of the AO model

07 ] t; with g=0.8. Shown are the critical power laws in the one-phase and
||:j ‘ two-phase regions of various physical quantities obtained in scaling
-08 1 — plots. Listed in the last column is the value#jf . at which the best
i 09 ] y collapse in the corresponding scaling plot was obsefpedvided
] ’ 4 here to give an indication of the consistency of our resulibe
= 1.0 symbolsM, D, x, and o are defined in Sec. IV, while the critical
5 11 exponents are listed in E¢L9).
j =
-1.2 ] One-phase region Two-phase region n,‘m
«{,@‘*“/‘
13 y=027xP M. - (0.27+0.02t8 0.765
14 : : Mp - (0.69+0.02t8 0.765
-1.0 0.0 1.0 2.0 De= e cr - (0.12+0.03t1™@ 0.771
In(x=tL") Do~ pcr - (0.41+0.00"™*  0.766
FIG. 2. 3D lIsing scaling plot for the order parameter of the Xe (0.22+0.03(-07 _ 0.766
colloids M. given by Eq.(8) for the AO model withq=0.8 in the (0.056+0.00% 0.766
two-phase region. The choice of axis is explained in the text. The  Xp (1.24+0.08(-t)™ 0.765
critical amplitude is extracted by means of a fit to the tail of the (0.3+£0.0t7 0.768
data, see also Table I. o _ (0.26+0.02t% 0.766

other values ofy,. We also performed a number of shorter

simulations to explicitly measur@(7,) at different values of  for D andD, given for completeness in Table I, must there-
7,- The results of these simulations were used to check thore be treated with some care,

conS|stency and accuracy of the extrapolated distributions. By combining the expressions fodl; and D, in Table |,
The quallty of our data is such that extrapolations over théhe colloid packing fractions of the vapor and liquid phase

range ,~0.72 to 7,~0.83 can be carried out reliably. (¢ and 7:) can be written as functions of,. These expres-
sions, which are valid close to the crltlcal point in the ther-
modynamic limit, describe the binodal of the AO model in
reservoir representation. The resulting binodal is shown in
The critical behavior of the order parameter of the col-Fig. 5, together with the raw simulation data from the vari-
loids M., is analyzed in the scaling plot of Fig. 2. The col- ous system sizes. The figure clearly shows the familiar finite-
lapse of the simulation data from the different system sizesize deviation of the simulation data close to the critical
onto one master curve is clearly visible. The scaling plot forpoint [4].
the order parameter of the polymevk, looks similar and is
not shown. In our analysis, the critical polymer fugaci
was used as a free parameter and tuned until the best collapse . . . -
occurred. By performing a linear least squares fit to the tails Ne_-xt, we consider the cr|t!cal behavior of the suacapubﬂ—
of the master curves, the critical amplitudes can be obtained?- Flgura 6 shows the scaling plot of the_susceptlbllyty of
The corresponding critical power laws are given in Table |the colloidal phase; in the one-phase region. The critical

which also lists the value off, ., that was used in the scaling

A. Order parameter and binodal

B. Susceptibility

plots. Naturally, this value ofrf o should agree with the LA vy e—
previous estimate listed in Eql). The critical amplitudes tﬂg; T
obtained from the fits are sensitive to the range over which -~ 051 55 o
the fit is performed: the variation is used as a measure for the B 10 ]
error in Table 1. <, :

The critical behavior of the coexistence diameter of the S 5 ]
colloids D, is presented in Fig. 3. In this case, the best col- DO yw_,,/
lapse of the data occurs gf .=0.771 which is not in agree- DT 20 ] B
ment with Eq.(1). Some discrepancy is to be expected > )
though because the singularity in the coexistence diameter is £ o5 ] o1
very weak, which makes it hard to discern it from simulation ' y=2
data. The behavior of the data in the tails, however, seems 30 & . .
rather well described by the exponentd.-The correspond- 10 0.0 10 20
ing scaling plot for the coexistence diameter of the polymers In(x=tL"™)

D, is shown in Fig. 4. In this case, the curvature of the data

for smallt seems in error. Therefore, we conclude that our FIG. 3. Scaling plot of the coexistence diameter of the colloids
simulation data is not accurate enough to reliably extract th®,. The value ofX.= 7. ., used in this plot was taken from E(L).
critical behavior of the coexistence diameter. The power lawgllowing variations inX, did not improve the collapse of the data.
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FIG. 4. The analogue of Fig. 3 for the coexistence diameter of FIG. 6. Scaling plot of the susceptibility of the colloidal phase
the polymersD,,. Xo= 7, ¢ Was taken from Eq(l). Xc in the one-phase region. In this case Ep) is used to measure
Xc:
power law extracted from this plot is listed in Table I. The D o N
scaling plot for the susceptibility of the polymer phaggin ~ @nd xc given by Eq.(11). In principle, close to the critical

the one-phase region is qualitatively similar and not shownPOint, the susceptibility should be the same in both phases. In
|nstead, On|y the critical power law is given in Table I. praCtlce, there will be differences due to the numerical diffi-

Measurements of the susceptibility in the two-phase reculties outlined above. Two procedures are now conceivable:

gion are prone to a number of potential numerical pitfalls.(1) Use the average off and y, as best estimate of the
Since the susceptibility is a second order moment of théusceptibility, or(2) use onlyx.. Which of these procedures
distribution P(7,), it is generally more sensitive to statistical iS the best needs to be checked with the data available. In our
errors than first order moments like the order parameter. Fdf@se, the susceptibility of the colloidal phase in the two-
asymmetric systems like the AO model, the additional probPhase region was best described using olyThe resulting
lem arises that the statistics in the liquid peakRsf;,) are  Scaling plotis shown in Fig. 7 and the corresponding power
systematically better than in the vapor peak: simply becaus@&W in Table I. The collapse of the data is clearly visible, but
the liquid peak contains more colloids. These problems willinlike Fig. 6, the slope of the data for larges not quite .
of course vanish with increasing system size. However, for 4" €SS satisfactory fit is expected though, because the statis-
nontrivial system like the AO model, the system sizes thafiCS in Fig. 7 are significantly worse compared to Fig. 6 since
can be handled today are unfortunately still in the regime®nly half the data is used. The susceptibility measurements
where these subtleties come into play. of the po_lymer phasesI in \ghe two-phase region were most
In case of the colloidal vapor and liquid in the two-phase@ccurate if the averade, +x,)/2 was used. The correspond-

region, the relevant susceptibilities gy given by Eq.(10)  Ing power law is listed in Table I. _
In Fig. 8 we plot the susceptibility of the colloids as func-

0.80 tion of 7;[) in the vicinity of the critical point. Shown are the
raw simulation data as well as the critical power laws of
079 | Table I. Clearly demonstrated is the familiar finite-size
_35 L ' L
0.78 N y=0056x7"
[ oN B
1=y _40 g
0.77 . Y
S N
® 45 A
0.76 e, A
. = 3
I \\
> 50 5\
0.75 : ; ; \
000 005 0.0 015 020 0.25 55 ] Le210 .
e L=17.7 -
L=16.7 "\\
FIG. 5. Phase diagram of the AO model in reservoir represen- 60 15185 . ——
tation. The solid curvélL =«) shows the binodal in the thermody- -1.0 0.0 1.0 2.0 3.0
namic limit obtained using the power laws fbt. and D, listed in In( x =tL”")

Table | (here 7}, ,=0.766 was used The dashed/open curves are
raw simulation data for various finite system sizeas indicated.
The bar marks the location of the critical point given by EL.

FIG. 7. Scaling plot of the susceptibility of the colloidal liquid
X, given by Eq.(11) in the two-phase region.

011401-7



VINK, HORBACH, AND BINDER

Xc

FIG. 8. Susceptibility of the colloidg. across the phase transi-
tion. The solid curve shows the susceptibility in the thermodynamic
limit given by the critical power laws of Table | Wit%,m=0-766-
The remaining curves show the raw simulation data of the various
system size§.

singularity [4].

As mentioned before, the finite size extrapolation of the
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C. Interfacial tension
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0.008
= 0.80
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--------- 0.79
& 0.004 ] - .
~ B O/ ....... o 0'78
00021 - L
- T 077
0,000 =7 . |
0.00 0.004 0.008 0.012
In(Ly/L"

FIG. 9. Finite size extrapolation of the interfacial tension in
In(L)/L9%L. This extrapolation scheme corresponds to the assump-
tion INnA=0 in Eqg.(26). Shown in the above plot is the interfacial
tension of the finite system, as function of IfL)/L%"* for various
values ofn,rj as indicated. The straight lines are linear least squares

fits to the data. The intercept of these lines with the ordinate yields

) ) ) . o an estimate for the interfacial tensian, in the thermodynamic
rounding of the raw simulation data in the vicinity of the |imit.

used, the best collapse is observed;[ggr=0.7661, which is
in excellent agreement with E@L). Therefore, we conclude

n

0.008

considered. In this case, the critical power law=ot?” is
valid which implies that plots ofr.,, versust on double loga-

rithmic scales should collapse onto straight lines, provided

the correct value ofy, . in t is used. Note tha, ., is the
only free parameter: the critical exponentfollows auto-

matically from the slope of the line. The resulting plots are &

shown in Figs. 11 and 12, in which(ln)/L%* and 1191
were used as scaling variable, respectively, ahgr in each

plot was tuned until the best collapse occurred. In these fig-

ures, measurements of the interfacial tension uw[)t:eo.79
were used.

One important observation is that both data sets in Figs.
11 and 12 accurately reproduce the expected slope 2

0.000

~1.26 corresponding to 3D Ising behavior. However, if
In(L)/L% is used as scaling variable, the best collapse is FiG. 10. The analogue of Fig. 9 but usingLf7! as scaling
obtained aty) ,=0.7696, which is not in agreement with the variable instead. This extrapolation scheme corresponds to the as-

previous estimate of Eq1). On the other hand, if 171 is

011401-8

e system size 421,35,34

post priorithat 11.9°1 is the appropriate scaling variable for
. , T . . our problem. The corresponding power law obtained from
interfacial tension is less straightforward and various methi:. o . : .
i . ._'Fig. 12 is listed in Table I. The effect of using the incorrect
ods can be used. Since the number of different system sizes
considered by us is rather small, multiparameter fits such
the ones investigated in R€f33] are out of the question.
Instead, we investigate single parameter fits only, which
this case essentially means choosind@. JAL%™* or 1/L% as
scaling variable. The results of both extrapolation procedure
for a number of differenby:J are summarized in Figs. 9 and
10. The extrapolations produce meaningful estimates up to
ngzo.so.

The fits in Figs. 9 and 10 seem equally accurate, an
based on these figures alone we cannot reject one extrapolt%-
tion method in favor of the other. The issue is resolved when
the interfacial tensiowr,, in the thermodynamic limit itself is

ascaling variable seems to be that the critical point is not
éorrectly estimated, while the critical exponent is less af-
. fected. It thus seems wise practice to always compare the
critical point obtained from finite size extrapolations of the
interfacial tension to some other independent estintiis
&stimate could for instance be obtained using the cumulant
intersection method
Note that scaling with 191 is also consistent with the
xpected finite size scaling & (7.) near the critical point.
lose to the critical point, the distributidd(7.) scales with

0.006 1

0.004 1

0.002 {

......

sumptionx=0 in Eq.(26).

0.000 0.001

0.002 0.003 0.004 0.005
1.9
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-5 ' ' ' tension is most consistentif=0 is assumed in Eq26) [33].
6 ] _ 029 £ Of course, our data do not exclude that away from the critical
O = point, a term proportional to (h)/L%* may well become
7] , L important.
e
-~ -8 p@i’l
L “ D. Critical amplitude ratios
£ -9 1 L
) k We now turn to the critical amplitude ratios that can be
-10 7 extracted from Table I. We first calculatg, given by Eq.
11 1 " i (20). If we consider the _Colloid_al phases we obt_eli!}
sim: In(L)/L ;it e =3.9£0.9. The corresponding ratio for the polymers is found
12 : : . to beU,=4.1£1.9. Within the error bars, these estimates are
-7 -6 -5 -4 -3 compatible with Eq(20). The quantitw?R>? is found to be
In(t) 0.10+0.04 for the colloidal phases, and 0.08+0.04 for the

polymer phases. This is again compatible with E21l), al-

FIG. 11. Interfacial tension in the thermodynamic limit, as though one must be aware of the |arge error bars in our
function oft on a double logarithmic scale, whergln/L4! was  ogtimates. Finally, the quantityR))*>%/Q. is found to be
used as scalring variable. The best collapse onto a straight line 6.40’;0.16 for the colloids, and O(.735i0.07 for the polymers.
observed aty, ,=0.7696, which is not in agreement with BQ). |, this case, we systematically underestimate the values
The slope of the line yields the critical exponent of the |nterfaC|aI|iS,[ed in Eq.(22). Note, however, that the discrepancy with
tension, for which we find 2=1.25+0.01. . ! ’ - e .

the 3D Ising values is not too severe. Given the difficulty in
general of measuring critical amplitudes, even in the case of
simple lattice model$11], the agreement we obtain is al-

— Blv Blv
PL(770) = boL#"P(boL# " e) (27) " ready quite remarkable.

whereP, (7,) is the distributionP(7,) measured in the finite Vill. SUMMARY AND OUTLOOK

system of sizd_, b, some non-universal constant, affl a . . .
function independent of system size. According to E), In summary, we have .studledl the critical pgr_]awor of the
the free energy barrieF, is given by the peak-to-valley _order parameter, interfacial tension, susceptlb|llty and coex-
height in the logarithm oP, (). The above scaling property |s'tence'd|ameter of .the AO model wlth colloid to polymer
thus implies thatF, becomesL independent close to the SiZ€ ratioq=0.8. An important result is that the critical ex-
critical point. As a result, the interfacial tension should scald®onent of the interfacial tension equals the expected 3D Ising
with 1/L9L, It is worth noting that for the 2D Ising model V&lué 22~1.26. This critical behavior is consistent with pre-
Berget al. also found that the extrapolation of the interfacial Yious simulations[8,9], and also with experimental work
[37] in which 3D Ising critical behavior was observed in real
colloid-polymer mixtures. The critical behavior of the order
-5 : : s _ parameter and the susceptibility are also 3D Ising like. Our
data for the coexistence diameter is not conclusive. This is
51 os_=028tY L related to the small value of the critical exponentwhich
- makes it difficult to accurately resolve the critical behavior
_7 ] L from the simulation data. More accurate simulations of larger
— E systems are required to resolve this.
P g ﬁ-{ﬁ i We found that the critical amplitude ratios obtained from
Pﬁ our simulations are compatible with the 3D Ising universality
Z9 ] % H i class. This confirms the consistency of our data, and is en-

In(o

couraging considering the AO model is an asymmetric bi-
i nary mixture and therefore difficult to simulate. We empha-
sim: 197 —— size, however, that our estimates for the critical amplitudes
fit e should be regarded as consistency checks only. Their accu-
_7 _'6 _'5 _'4 _3 racy cannot compete with that obtained in, for example, di-
In(t) rect simulations of the 3D Ising lattice model.
We have demonstrated that finite size scaling methods are
FIG. 12. The analogue of Fig. 11 in which 11! is used as €qually applicable to rather complex systems like the AO
scaling variable instead. The best collapse occurgat=0.7661, ~model, and can be used to obtain results with meaningful
which is in excellent agreement with E(). For the critical expo- ~accuracy. Regarding finite size extrapolations of the interfa-
nent we obtain 2=1.26+0.01 and for the critical amplitude,  cial tension, our analysis shows that close to the critical
=0.26+0.02. point, the most consistent fits are obtained by ignoring the

-10 11

-1
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In(L) dependent term in E@26). For the AO model, we also beyond the scope of this work, and will be postponed to a
observed that by using the incorrect scaling variable, thduture publication.

critical point in particular is not estimated correctly.

This work provides additional insight into the critical be-
havior of the AO model. For a complete understanding, the
critical behavior of the correlation length should still be in-

ACKNOWLEDGMENTS

We are grateful to the Deutsche Forschungsgemeinschaft

vestigated. While the corresponding critical exponent is offor support(TR6/A5). J.H. acknowledges the support of the
course known, namelyr; the critical amplitude is not. This DFG under Grant No. HO 2231/2. We thank M. Miiller for
critical amplitude, however, cannot be extracted from themany stimulating discussions and K. Dawson, R. Evans, and
probability distributionP(7.). The usual approach to study M. Schmidt for stimulating remarks. Generous allocation of
the correlation length is to consider the static structure factocomputer time on the JUMP at the Forschungszentrum Jiilich
instead[26]. This requires additional simulations which are GmbH is gratefully acknowledged.

[1] A. P. Gast, C. K. Hall, and W. B. Russel, J. Colloid Interface
Sci. 96, 215(1983.

[2] W. C. K. Poon, Curr. Opin. Colloid Interface ScB, 593
(1998.

[3] K. Binder and E. Luijten, Phys. Re44, 179 (2001).

[4] H-P. Deutsch, J. Stat. Phy§7, 1039(1992.

[5] D. P. Landau and K. BindeA Guide to Monte Carlo Simula-
tions in Statistical Physic€Cambridge University Press, Cam-
bridge, England, 2000

[6] S. Asakura and F. Oosawa, J. Chem. PH33.1255(1954).

[7] A. Vrij, Pure Appl. Chem.48, 471(19786.

[8] R. L. C. Vink and J. Horbach, J. Phys.: Condens. Maftéy
3807 (2004).

[9] R. L. C. Vink and J. Horbach, J. Chem. Phy$21, 3253
(2004).

[10] J. M. Brader, R. Evans, and M. Schmidt, Mol. Ph{€1, 3349
(2003.

[11] A. Pelissetto and E. Vicari, Phys. Rep68 549 (2002.

[12] D. Stauffer, M. Ferer, and M. Wortis, Phys. Rev. Le28, 345
(1972.

[13] V. Privman, P. C. Hohenberg, and A. Aharony,Rhase Tran-
sitions and Critical Phenomenadited by C. Domb and J. L.
Lebowitz (Academic, London, 1991

[14] P. Virnau and M. Miller, J. Chem. Phy420, 10925(2004).

[15] M. Muller and N. B. Wilding, Phys. Rev. 551, 2079(1995.

[16] H. Lekkerkerker, W. Poon, P. Pusey, A. Stroobants, and P.
Warren, Europhys. Lett20, 559(1992.

[17] E. Meijer and D. Frenkel, J. Chem. Phys00, 6873(1994.

Matter 15, S3411(2003.

[21] K. Binder, Z. Phys. B: Condens. Matter3, 119 (1981).
[22] N. B. Wilding, in Annual Review of Computational Physics

Vol. 1V, edited by D. Stauffer(World Scientific, Singapore,
1996.

[23] R. E. Goldstein and N. W. Ashcroft, Phys. Rev. L&, 2164

(1985.

[24] R. L. C. Vink, in Computer Simulation Studies in Condensed

Matter Physics XVllledited by D. P. Landau, S. P. Lewis, and
H. B. SchuettlerSpringer-Verlag, Heidelberg, Berlin, 2004

[25] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Léti.

2635(1988.

[26] S. K. Das, J. Horbach, and K. Binder, J. Chem. Phy&9,

1547(2003.

[27] K. Binder, Phys. Rev. A25, 1699(1982.
[28] M. Nakata, T. Dobashi, N. Kuwahara, M. Kaneko, and B. Chu,

Phys. Rev. A18, 2683(1978.

[29] J. J. Rehr and N. D. Mermin, Phys. Rev.& 472(1973.
[30] E. Luijten, M. Fisher, and A. Panagiotopoulos, Phys. Rev. Lett.

88, 185701(2002.

[31] J. Potoff and A. Panagiotopoulos, J. Chem. Phit2 6411

(2000.

[32] K. K. Mon, Phys. Rev. Lett.60, 2749(1988.
[33] B. A. Berg, U. Hansmann, and T. Neuhaus, Phys. Revk

497 (1993.

[34] J. E. Hunter 1l and W. P. Reinhardt, J. Chem. Phy83 8627

(1995.

[18] M. Schmidt, H. Léwen, J. Brader, and R. Evans, Phys. Rev[35] D. Nicolaides and A. D. Bruce, J. Phys. 21, 233(1988.

Lett. 85, 1934(2000.

[19] P. Bolhuis, A. Louis, and J.-P. Hansen, Phys. Rev. L8,
128302(2002.

[20] M. Schmidt, A. Fortini, and M. Dijkstra, J. Phys.: Condens.

[36] A. D. Bruce and N. B. Wilding, Phys. Rev. Let68, 193

(1992.

[37] B. H. Chen, B. Payandeh, and M. Robert, Phys. Re\6 X

2369(2000.

011401-10



